skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bringewatt, Jacob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The problem of optimally measuring an analytic function of unknown local parameters each linearly coupled to a qubit sensor is well understood, with applications ranging from field interpolation to noise characterization. Here we resolve a number of open questions that arise when extending this framework to Mach-Zehnder interferometers and quadrature displacement sensing. In particular, we derive lower bounds on the achievable mean square error in estimating a linear function of either local phase shifts or quadrature displacements. In the case of local phase shifts, these results prove, and somewhat generalize, a conjecture by Proctor []. For quadrature displacements, we extend proofs of lower bounds to the case of arbitrary linear functions. We provide optimal protocols achieving these bounds up to small (multiplicative) constants and describe an algebraic approach to deriving new optimal protocols, possibly subject to additional constraints. Using this approach, we prove necessary conditions for the amount of entanglement needed for any optimal protocol for both local phase and displacement sensing. Published by the American Physical Society2024 
    more » « less
  2. We derive a family of optimal protocols, in the sense of saturating the quantum Cramér-Rao bound, for measuring a linear combination of d field amplitudes with quantum sensor networks, a key subprotocol of general quantum sensor network applications. We demonstrate how to select different protocols from this family under various constraints. Focusing primarily on entanglement-based constraints, we prove the surprising result that highly entangled states are not necessary to achieve optimality in many cases. Specifically, we prove necessary and sufficient conditions for the existence of optimal protocols using at most k-partite entanglement. We prove that the protocols which satisfy these conditions use the minimum amount of entanglement possible, even when given access to arbitrary controls and ancillas. Our protocols require some amount of time-dependent control, and we show that a related class of time-independent protocols fail to achieve optimal scaling for generic functions. 
    more » « less
  3. Mapping fermionic operators to qubit operators is an essential step for simulating fermionic systems on a quantum computer. We investigate how the choice of such a mapping interacts with the underlying qubit connectivity of the quantum processor to enable (or impede) parallelization of the resulting Hamiltonian-simulation algorithm. It is shown that this problem can be mapped to a path coloring problem on a graph constructed from the particular choice of encoding fermions onto qubits and the fermionic interactions onto paths. The basic version of this problem is called the weak coloring problem. Taking into account the fine-grained details of the mapping yields what is called the strong coloring problem, which leads to improved parallelization performance. A variety of illustrative analytical and numerical examples are presented to demonstrate the amount of improvement for both weak and strong coloring-based parallelizations. Our results are particularly important for implementation on near-term quantum processors where minimizing circuit depth is necessary for algorithmic feasibility. 
    more » « less
  4. Monte Carlo simulations are useful tools for modeling quantum systems, but in some cases they suffer from a sign problem, leading to an exponential slow down in their convergence to a value. While solving the sign problem is generically NP hard, many techniques exist for mitigating the sign problem in specific cases; in particular, the technique of deforming the Monte Carlo simulation's plane of integration onto Lefschetz thimbles (complex hypersurfaces of stationary phase) has seen significant success in the context of quantum field theories. We extend this methodology to spin systems by utilizing spin coherent state path integrals to reexpress the spin system's partition function in terms of continuous variables. Using some toy systems, we demonstrate its effectiveness at lessening the sign problem in this setting, despite the fact that the initial mapping to spin coherent states introduces its own sign problem. The standard formulation of the spin coherent path integral is known to make use of uncontrolled approximations; despite this, for large spins they are typically considered to yield accurate results, so it is somewhat surprising that our results show significant systematic errors. Therefore, possibly of independent interest, our use of Lefschetz thimbles to overcome the intrinsic sign problem in spin coherent state path integral Monte Carlo enables a novel numerical demonstration of a breakdown in the spin coherent path integral. 
    more » « less
  5. null (Ed.)